정다면체가 5개뿐인 이유(증명 포함)
다면체는 다각형(삼각형, 사각형, 오각형, ··· )인 면으로만 둘러싸인 입체도형을 의미해요. 또한 다각형에서 선분의 개수에 따라 다각형의 이름이 결정된 것처럼 다면체에서는 면의 개수에 따라 다면체의 이름이 결정돼요. 예) 선분의 개수가 4개인 다각형은 사각형. 면의 개수가 4개인 다면체는 사면체. 다면체 중에서 각 면이 모두 합동인 정다각형(정삼각형, 정사각형, 정오각형, ··· )이고, 각 꼭짓점에 모인 면의 개수가 같은 다면체를 정다면체라고 합니다. 정다면체의 종류가 5개뿐인 이유에 대해 설명해보도록 할게요. 정다면체가 5개뿐인 이유 면의 모양이 (1) 정삼각형, (2) 정사각형, (3) 정오각형, ··· 인 경우로 나눠서 정다면체를 분류해보도록 할게요. 우선 정다면체의 가장 기본이 되는 조건부터 ..
2021. 4. 14.
중심각과 호의 길이, 부채꼴의 넓이, 현의 길이 사이의 관계
한 원 또는 반지름이 같은 원(합동인 원)에서 중심각의 크기가 같은 경우와 중심각의 크기가 2배, 3배, ··· 변할 때, 중심각과 호의 길이, 부채꼴의 넓이, 현의 길이 사이의 관계에 대해 정리해 보도록 해요. 중심각의 크기가 같은 경우 두 부채꼴의 중심각의 크기가 같을 때, 한쪽의 부채꼴을 회전시키면 서로 포개어질 수밖에 없어요. 따라서 두 부채꼴은 합동이 되며, 합동인 두 도형은 길이와 넓이가 같기 때문에 두 부채꼴의 호의 길이와 넓이는 같습니다. 현의 길이에 대해 생각해보면, 두 반지름과 현으로 둘러싸인 삼각형 OAB와 삼각형 OCD에 대해 $\overline{OA}=\overline{OC}$ (반지름) $\overline{OB}=\overline{OD}$ (반지름) $\angle{AOB}=\an..
2021. 1. 3.
원, 호, 현, 할선, 부채꼴, 중심각, 활꼴의 뜻
초등학교 때 종이에 컴퍼스의 침을 고정하고 일정한 거리만큼 컴퍼스를 벌려 한 바뀌 돌리는 활동을 통해 원을 그려봤어요. 위의 활동에서 원의 의미를 생각해보면, 종이를 평면, 컴퍼스의 침을 한 점, 컴퍼스가 지나간 자취는 선이 되며 선은 모든 점이 모여서 이루어졌으므로 평면 위의 한 점으로부터 일정한 거리에 있는 모든 점으로 이루어진 도형을 원이라고 할 수 있습니다. 호, 현, 할선의 뜻 호는 원의 둘레의 일부분이에요. 원 위의 두 점을 잡고 두 점을 자른다고 생각하면 원은 두 부분으로 나누어지죠? 이 두 부분을 각각 호라고 합니다. 위의 그림에서 두 점 A, B에 대하여 길이가 짧은 쪽을 호 AB라고 하며, 길이가 긴 쪽은 그 호 위의 한 점 C를 잡아 호 ACB라고 합니다. 현은 원 위의 두 점을 이은..
2020. 12. 9.